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Introduction 
Bolus-tracking perfusion MRI is based on the monitoring of the first passage of a bolus of contrast 
agent through the brain tissue and a brain-feeding artery. The contrast agent is injected rapidly in the 
antecubital vein in the patients arm by means of an MR-compatible power injector. This bolus of 
contrast agent is pushed in the direction of the heart by means of a saline flush. Continuous dynamic 
scanning with a typical temporal resolution of approximately 1-2 second is used to monitor the passage 
of the contrast agent through the brain tissue and a brain-feeding artery. The change in MR signal is 
hereafter converted into the concentration of contrast agent based on the physical properties of the 
contrast agent. The time evolution of the concentration of contrast agent in the brain-feeding artery is 
called the arterial input function. Deconvolving the passage through the brain tissue with the arterial 
input function, results in the tissue response function. Based on the theory of tracer kinetics, perfusion 
parameters are calculated from this tissue response function. To achieve quantitative measures of 
perfusion, all these different aspects should be considered. 

Contrast agent properties-artery 
Spin echo sequences 
Spin echo sequences are especially favourable for perfusion MRI, since it is more weighted to the 
microvasculature than gradient echoes sequence (2). However, it can only measure the shape of the 
arterial input function (3). This is because the input function is measured in the vicinity of the artery 
and is therefore highly dependent on the exact location with respect to the artery. It has been shown in  
experiments in dogs that the observed signal changes are proportional to the concentration of contrast 
agent (4). 
Gradient echo sequences 
The presence of contrast agent in an artery influences the MR-signal in two ways:  

1. The amplitude of the MR-signal will decrease, since the contrast agent will create field 
inhomogeneities. The presence of the red blood cells leads to compartmentalization of the 
contrast agent, that results in a non-linear relationship between the concentration of contrast 
agent and the ΔR2

* (see Fig. 1) (1,5). This non-linear relationship is frequently neglected and a 
linear approximation is used. However, neglecting this quadratic relation will affect 
quantitative measures of cerebral blood flow, volume and mean transit time. Most perfusion 
studies use this amplitude effect to measure the arterial input function. 

2. Due to the different susceptibility of the contrast agent, the magnetic field inside the artery 
will change. This leads to phase changes (see Fig. 1) (6). The angle of the artery with respect 

 
Figure 1.  Changes in MR signal versus contrast agent concentration as measured in flowing, 
fully oxygenated blood at body temperature ((1)).  a: ΔR2

*.  b: phase velocity (Δθ/ΔTE).  
 



to the main magnetic field determines the proportionality constant between the intravascular 
phase and the concentration of contrast agent. For an artery oriented at 54.7° (the magic angle) 
no phase changes will occur within the artery. Measurements of phase changes in a tube 
parallel to the main magnetic field have shown a linear relation between the phase change and 
the concentration of contrast agent independent of the hematocrit of blood (5). Because of this 
insensitivity to hematocrit differences and the higher SNR of phase measurements, phase 
changes are also used to quantify the concentration contrast agent in the artery(7) 

Arterial input function measurements 
Because spin echo sequences are not capable of measuring the arterial input function quantitatively, 
gradient echo sequences are used when absolute quantification is required. However, it is important to 
realize that the resolution of a typical sequence is too low to find a voxel that is exclusively sensitive to 
arterial blood since partial volume effects will occur. Two situations can be differentiated when 
describing partial volume effects of input function measurements with gradient echo sequences: 
Artery parallel to the main magnetic field 
When an artery is oriented parallel to the main magnetic field, the magnetic field changes are limited to 
the inside of the artery. This implies that signal from tissue surrounding the artery is not influenced by 
the presence of contrast agent in the artery. The total signal of a voxel with partial volume effects can 
therefore be described by the complex sum of a stationary signal component from tissue and 
dynamically changing signal from the blood. A change in the concentration of contrast agent will affect 
both the phase and the amplitude of the blood signal. During a bolus passage, the complex blood signal 
will therefore traverse a spiral-like trajectory, originating from the quadratic change in ΔR2

* (that is a 
decrease in amplitude) and a linear phase change (see Figure 2). For a voxel with partial volume 
effects, the surroundings will also contribute to the signal and the spiral will be shifted with respect to 
the origin. When neglecting this shift and just calculating the ΔR2

* from the total signal of the voxel, 
both erroneous peaks and under- or overestimation of the concentration of contrast agent can occur (see 
Fig. 2). However, by an iterative fit of the contribution of the surroundings, it is possible to correct for 
partial volume effects when the artery is oriented parallel to B0 (1,8). 
Artery not parallel to the main magnetic field 
When the artery is not oriented parallel to the main magnetic field, the contrast agent will also affect 
the magnetic field outside the vessel. This situation occurs for input function measurements in the 
MCA and for local arterial input function algorithms. The magnetic field changes outside the artery 
will lead to a far more complicated situation for partial volume voxels, since the contribution of the 
surroundings of the artery will now depend on the concentration of contrast agent within the artery. The 
total signal of the voxel will now depend on: radius of the vessel, location of voxel with respect to 
vessel, angle of the vessel with respect to the main magnetic field, and the size of the voxel. Whether 
quantitative arterial input function measurements are feasible in arteries oriented at unknown 
orientation with respect to the main magnetic field, remains to be studied (9). 
Local arterial input function measurements 
A recent new development is local arterial input function measurements (10). In this approach more 

 
Figure 2: Influence of partial volume effects on the shape of the input function. The dot indicates the 
contribution of surrounding tissue. Left: pixel exclusively sensitive to blood. Middle: erroneous peaks on the 
input function. Right: Overestimation of input function. 



than one input function per perfusion experiment is used, that is for each voxel an individual input 
function is defined from arterial structures in its direct environment. Main advantage of the local AIF 
approach is that the input function measurement is performed much closer to the tissue under 
investigation and thereby reflects the true input function much better. 

Contrast agent properties-tissue 
Based on the first articles of Rosen et al, all perfusion MR studies have assumed a linear relation 
between the concentration of contrast agent in tissue and the ΔR2

(*) (11-14). However, there is only 
limited evidence for this assumption and the proportionality constant is unknown. Recently, Kiselev 
has combined many theoretical models to investigate the correctness of this assumption and the 
influence on perfusion measurements (15). Central in this study is the observation that the 
extravascular signal traverses both the diffusional narrowing regime (characteristic diffusion length 
large compared to the field inhomogeneities) and the static dephasing regime (diffusional length much 
smaller than the field disturbances). This theoretical study reveals potential large errors due to the 
transitions between the different regimes. Such errors can certainly explain differences between the 
MR measures of perfusion and other modalities, like PET. However, for clinical practice it will be 
important to investigate whether these errors show large inter- and intra-patient variation or that these 
errors could be corrected for by general correction factors. Because these signal formation processes 
are the basis of perfusion MRI, a solid practical validation of this theoretical study is essential.   

Perfusion model/tracer kinetics 
For a detailed description of tracer kinetics the reader is referred to basic articles and books on tracer 
kinitecs and perfusion MRI (16-20). However, to understand quantification issues in perfusion 
imaging, it is necessary to be aware of some of the basic assumptions and therefore inherent limitations 
of this technique, namely: 

• The contrast agent remains intravascular and extracellular, implying that the contrast agent 
resides only in blood-plasma. However, the measured plasma-flow is not characteristic for the 
flow of whole blood as it is known that blood plasma travels at a different velocity than red 
blood cells do, leading to hematocrit differences between large and small vessels. Therefore, a 
correction factor is frequently used to correct for these hematocrit differences. This factor is 
usually assumed constant for all subjects and patients, even though it is known to vary. 

• The measured arterial input function is assumed to represent  the input function at tissue level. 
In patients with stenoses or other vascular pathology between the location of the input 
function measurement and the tissue, the shape of the bolus will change and the measured 
input function will no longer be representative for the input function of the tissue (21-23). 
Such dispersion will lead to errors in the calculated perfusion values. A potential solution for 
this problem is to use a local AIF approach that aims at measuring the input function at tissue 
level (10,24). However, partial volume effects are known to affect both the shape and the 
amplitude of such local AIFs and therefore more research has to be performed to verify that 
this yields correct input function measurements (9).  

Injection protocol 
To achieve a sharp bolus profile that enables accurate CBF-measurements, fast injection of the contrast 
agent and the use of a large chaser of saline are essential. By means of simulations, the influence of the 
injection protocol on calculated perfusion parameters has been investigated (25). For a contrast agent of 
500 mM Gd-DTPA at a 1.5 Tesla MRI scanner, an optimal injection speed of 4 – 5 ml/sec was found. 
Higher injections speeds do not improve CBF quantification because the dispersion of heart and lungs 
will dominate over the sharper injection profile. Furthermore, for higher rates, the diameter of the 
cannula for the IV line needs to be larger than the typical 20 gauge, potentially leading to increased 
patient discomfort. The chaser should be at least 30 ml. Recently, more concentrated contrast agents 
have been introduced that either can help create a sharper bolus profile using the same injection speed 
or can enable a lower injection speed. 

Deconvolution method 
Detailed knowledge about the behaviour of the deconvolution method with respect to different shapes 
of the residue function, dispersions and delays between input function and tissue passage, and signal to 
noise is essential for correct interpretation of perfusion data. The original proposed singular value 
decomposition (SVD) algorithm used for deconvolution , for example, produced results that were fairly 



robust to low SNR and were independent with respect to underlying residue function but had a large 
dependence on delays between the input function and the tissue passage curves, leading to severe errors 
of the CBF quantification (17,21). However, several deconvolution methods have recently been 
proposed that are less sensitive to the presence of a delay between the input function and tissue passage 
(26-28). Therefore, the use of delay sensitive techniques should be discouraged at this moment. Due to 
differences in implementation of validation methods, it is very difficult to directly compare 
deconvolution techniques. Furthermore, one should differentiate between methods that provide 
accurate CBF quantification and methods that describe the shape of the residue function accurately. At 
the moment, deconvolution techniques that have been adequately characterized encompass SVD, 
Fourier, and maximum-likelihood expectation maximization (MLEM) methods (29).  

Temporal resolution 
Two studies have investigated the effect of the sampling rate on the accuracy of CBF measurements 
(25,30). When the input function and tissue passage curve are sampled too sparsely, deconvolution will 
result in an underestimation of the maximum value of the residue function and thus an underestimation 
of the CBF. Interpolation of both curves can somewhat reduce these errors (31). Both studies conclude 
that the temporal resolution should be higher than 1.5 sec. 

Post-processing 
When region-of-interest (ROI) values of perfusion parameters are necessary, two different approaches 
can be chosen: 

1. First calculate single pixel maps of the perfusion parameters and average the perfusion 
parameters over the ROIs 

2. Average the tissue passage curves over the ROI and deconvolve this averaged curve with the 
AIF. From the resulting residue function the perfusion parameters can be calculated. 

The first approach has the disadvantage that the deconvolution will be performed on more noisy 
curves, thereby limiting the accuracy. However, the second approach could introduce erroneous 
broadening of the passage curve through the brain tissue, due to delay differences over the ROI. This 
would lead to an underestimation of the CBF.  

Conclusions 
To achieve absolute quantification several issues need to be addressed whereas the most important 
issues are: 

1. An accurate, quantitative arterial input function measurement close to the tissue under 
investigation 

2. Knowledge of the exact contrast agent properties in the microvasculature and the influence of 
pathology on these properties 

3. High temporal resolution 
4. Deconvolution method that allows reliable CBF measurements irrespective of shape of residue 

function 
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